The DoseFinding package provides
functions for the design and analysis of dose-finding experiments (for
example pharmaceutical Phase II clinical trials). It provides functions
for: multiple contrast tests (MCTtest
for analysis and
powMCT
, sampSizeMCT
for sample size
calculation), fitting non-linear dose-response models
(fitMod
for ML estimation and bFitMod
for
Bayesian and bootstrap/bagging ML estimation), calculating optimal
designs (optDesign
or calcCrit
for evaluation
of given designs), both for normal and general response variable. In
addition the package can be used to implement the MCP-Mod procedure, a
combination of testing and dose-response modelling (MCPMod
)
(Bretz et al. (2005), Pinheiro
et al. (2014)). A number of
vignettes cover practical aspects on how MCP-Mod can be implemented
using the DoseFinding package. For example a FAQ
document for MCP-Mod, analysis approaches for normal and binary data, sample size and power calculations as well
as handling data from more than one dosing regimen in certain scenarios.
Below a short overview of the main functions.
gender resp dose
1 1 1.5769231 1
2 1 0.6833333 3
3 1 0.2857143 0
4 1 0.6307692 3
5 1 0.1428571 2
6 1 0.1571429 1
## perform (model based) multiple contrast test
## define candidate dose-response shapes
models <- Mods(linear = NULL, emax = 0.2, quadratic = -0.17,
doses = c(0, 1, 2, 3, 4))
## plot models
plotMods(models)
## perform multiple contrast test
## functions powMCT and sampSizeMCT provide tools for sample size
## calculation for multiple contrast tests
test <- MCTtest(dose, resp, IBScovars, models=models,
addCovars = ~ gender)
test
Multiple Contrast Test
Contrasts:
linear emax quadratic
0 -0.616 -0.889 -0.815
1 -0.338 0.135 -0.140
2 0.002 0.226 0.294
3 0.315 0.252 0.407
4 0.638 0.276 0.254
Contrast Correlation:
linear emax quadratic
linear 1.000 0.768 0.843
emax 0.768 1.000 0.948
quadratic 0.843 0.948 1.000
Multiple Contrast Test:
t-Stat adj-p
emax 3.208 0.00160
quadratic 3.083 0.00231
linear 2.640 0.00844
## optimal design for estimation of the smallest dose that gives an
## improvement of 0.2 over placebo, a model-averaged design criterion
## is used (over the models defined in Mods)
doses <- c(0, 10, 25, 50, 100, 150)
fmodels <- Mods(linear = NULL, emax = 25, exponential = 85,
logistic = c(50, 10.8811),
doses = doses, placEff=0, maxEff=0.4)
plot(fmodels, plotTD = TRUE, Delta = 0.2)
Calculated TD - optimal design:
0 10 25 50 100 150
0.34960 0.09252 0.00366 0.26760 0.13342 0.15319